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Abstract We studied regulation of whole-tree water use
in individuals of five diverse canopy tree species growing
in a Panamanian seasonal forest. A construction crane
equipped with a gondola was used to access the upper
crowns and points along the branches and trunks of the
study trees for making concurrent measurements of sap
flow at the whole-tree and branch levels, and vapor
phase conductances and water status at the leaf level.
These measurements were integrated to assess physio-
logical regulation of water use from the whole-tree to
the single-leaf scale. Whole-tree water use ranged from
379 kg day~ ! in a 35 m-tall Anacardium excelsum tree to
46 kg day ™! in an 18 m-tall Cecropia longipes tree. The
dependence of whole-tree and branch sap velocity and
sap flow on sapwood area was essentially identical in the
five trees studied. However, large differences in transpi-
ration per unit leaf area (E) among individuals and
among branches on the same individual were observed.
These differences were substantially reduced when E was
normalized by the corresponding branch leaf area:sap-
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wood area ratio (LA/SA). Variation in stomatal con-
ductance (g;) and crown conductance (g.), a total vapor
phase conductance that includes stomatal and boundary
layer components, was closely associated with variation
in the leaf area-specific total hydraulic conductance of
the soil/leaf pathway (G,). Vapor phase conductance in
all five trees responded similarly to variation in G,. Large
diurnal variations in G, were associated with diurnal
variation in exchange of water between the transpiration
stream and internal stem storage compartments. Dif-
ferences in stomatal regulation of transpiration on a leaf
area basis appeared to be governed largely by tree size
and hydraulic architectural features rather than physi-
ological differences in the responsiveness of stomata. We
suggest that reliance on measurements gathered at a
single scale or inadequate range of scale may result in
misleading conclusions concerning physiological differ-
ences in regulation of transpiration.
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Introduction

Estimates of whole-tree water use in both tropical
(Granier et al. 1992, 1996; Becker 1996; Wullschleger
et al. 1998) and temperate (Granier 1987; Kelliher et al.
1992; Ko6stner et al. 1992; Bréda et al. 1995; Barrett et al.
1996; Wullschleger et al. 1998) species have become
more numerous in the last decade with the advent of
reliable and inexpensive methods for measuring sap flow
in large trees (e.g., Granier 1985). Total daily sap flow is
often strongly correlated with tree-size-related charac-
teristics such as basal area and sapwood area, both
within species (Kostner et al. 1992; Vertessy et al. 1995;
Becker 1996; Haydon et al. 1996) and among similar
co-occurring species (Vertessy et al. 1995). These rela-
tionships are useful for predicting stand-level water use
in forests with relatively few dominant species. However,
a similar dependence of water use on tree size among
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diverse species raises questions concerning the scale at
which species-specific differences in physiological regu-
lation of water use become apparent.

Few studies have attempted to assess the mechanisms
causing similarities in regulation of water use at the tree
level to diverge at the leaf level. In larger trees, this
would require integrated, concurrent measurements at a
minimum of three scales: (1) whole-tree sap flow near the
base of the trunk; (2) sap flow in upper branches as a
surrogate for transpiration; and (3) measurements of
stomatal conductance or resistance in individual repre-
sentative leaves by a technique such as porometry.
Measurements at the two extremes of scale, porometry
in single leaves, and sap flow near the base of the stem,
will not suffice. For example, the porometer alters the
ratio of stomatal to boundary layer conductance
resulting in overestimates of transpiration (Jarvis and
McNaughton 1986; Meinzer et al. 1993, 1995, 1997), and
the relationship between transpiration and sap flow near
the base of the trunk may be confounded by withdrawal
of water from internal storage above the measurement
point (Schulze et al. 1985; Goldstein et al. 1998).

In saplings and small trees, the mass flow rate of
water near the base of the stem is essentially equivalent
to transpiration. In larger trees, however, exchange of
water between the transpiration stream and stem storage
compartments may result in a considerable lag period
between fluctuations in transpiration and fluctuations in
sap flow near the base of the stem thereby precluding use
of the daily course of basal sap flow as a surrogate for
the daily course of transpiration (Schulze et al. 1985;
Loustau et al. 1996; Martin et al. 1997; Saugier et al.
1997; Goldstein et al. 1998). Nevertheless, even in large
trees total daily transpiration should be equivalent to
total sap flow measured near the base of the trunk
provided no substantial net change in whole-tree water
content has occurred over a diurnal cycle.

Concurrent measurements of sap flow in upper
branches and near the base of the stem can be exploited to
characterize both the quantity of water withdrawn daily
from internal storage, and the dynamics of exchange of
water between the transpiration stream and storage
compartments. Estimates of stem water storage obtained
in this manner range from about 10% to 25% of total
daily transpiration (Goldstein et al. 1998), but relation-
ships between diurnal water storage capacity and tree size,
and the potential impact of stem water storage on sto-
matal regulation of transpiration are not well established.

There is substantial evidence that stomatal conduc-
tance and transpiration are positively correlated with the
hydraulic conductance of the soil/root/leaf pathway in a
wide range of plant species and growth forms (Aston
and Lawlor 1979; Kiippers 1984; Meinzer et al. 1988;
Reich and Hinckley 1989; Meinzer and Grantz 1990;
Sperry and Pockman 1993; Meinzer et al. 1995). A close
coordination between vapor and liquid phase conduc-
tance can restrict variation in daily minimum leaf water
potential under a wide range of conditions (Whitehead
et al. 1984; Meinzer et al. 1992), thereby limiting the

utility of leaf water potential as a predictor of stomatal
conductance and transpiration. The influence of plant
and soil hydraulic properties on water use and stomatal
behavior in large trees has scarcely been examined. It has
recently been postulated that growth and maximum tree
height may be limited by increasing total axial hydraulic
resistance (Ryan and Yoder 1997). Whitehead and Jar-
vis (1981) have proposed that developmental adjustment
of tree architectural features such as the ratio of leaf area
to sapwood area serves to balance tree and stand tran-
spiration with tree and stand hydraulic properties,
leading to relative homeostasis of leaf water status, but
this hypothesis remains to be tested over a wide range of
species and conditions.

In this study, we have made concurrent, independent
measurements of basal and mid-stem sap flow, transpi-
ration from upper branches, stomatal and total vapor
phase conductances, and leaf water status of individual
trees of contrasting species from a lowland tropical
forest. Our objectives were to determine the relation-
ships between sap flow and sapwood area in trunks and
branches of these species, to characterize coordination
of vapor phase and liquid phase water transport prop-
erties, and to assess the influence of scale on the inter-
pretation of patterns of regulation of water use among
species by integrating measurements made at the whole-
tree, branch, and leaf levels.

Materials and methods
Field site and plant material

The study was conducted from January through March, 1996 in the
Parque Natural Metropolitano (8°58'N, 79°34’W, altitude ¢. 50 m)
near Panama City, Panama. The site supports a secondary seasonal
tropical forest, with a mean annual rainfall of about 1800 mm and
a dry season from mid-December through April, during which
about 8% of the annual rainfall occurs. However, total rainfall
from January through April 1996 was 377 mm, more than 200%
above normal.

A 45-m-tall construction crane with a horizontal jib of 51 m,
and equipped with a gondola, was used to access the trunk and
branches of the study trees. The gondola, which could reach
8100 m? of forest canopy, was raised up above and then lowered
into the crowns of the study trees, making the branches and leaves
easily approachable. One individual of each of five contrasting tree
species were selected for study (Table 1). Anacardium excelsum
(Bert. & Balb.) Skeels, Anacardiaceae, is an abundant tree that
renews all its leaves in the early dry season. Cecropia longipes Pitt.,
Moraceae, is a pioneer tree which has broad leaves, and frequently
houses myrmecophilous ants. Ficus insipida Willd., Moraceae, is an
evergreen tree, abundant in young forests, Luehea seemannii Tr. &
Planch., Tiliaceae, a pioneer species that is common in both young
and mature forests, and Spondias mombin L., Anacardiaceae, is
normally deciduous during the dry season, but had its full com-
plement of leaves when measurements were carried out during the
wetter than normal January of 1996.

Sap flow measurements

Sap flow was measured using the constant heating method de-
scribed by Granier (1985, 1987). Pairs of 20-mm-long 2-mm
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Table 1 Morphological and water use characteristics of the study trees. Sapwood area and maximum sap flow were measured at the base
of the tree. Values for maximum g. and sap flow rates are means + SE (n = 6 to 8) (DBH diameter at breast height)

Species DBH (cm) Height (m) Sapwood Daily total Maximum Sap Maximum g,
area (m?) sap flow flow rate (mmol m™2 s7")
(kg d™h (kg h™")
Anacardium excelsum 101.8 35 0.51 379.0 47.7 £ 2.4 35 +£2
Ficus insipida 56.7 30 0.21 164.0 21.7 £ 0.4 211 + 16
Luehea seemannii 38.2 29 0.10 129.0 13.7 £ 0.8 192 + 24
Spondias mombin 33.1 23 0.06 80.0 8.9 £ 0.2 178 + 36
Cecropia longipes 19.7 18 0.02 46.5 74 £ 0.6 125 £ 6

diameter temperature probes (UP GmbH, Munich, Germany) were
installed at various locations on the trees including about 1.5 m
height near the base of the trunk, several meters farther up the
trunk, in each of three to four exposed branches (averaging 5 cm in
diameter) per tree, and in some cases at near the bases of major
branches just above their intersection with the trunk. The upper
(downstream) probe was continuously heated with a constant
current power supply (UP GmbH) while the lower unheated probe
measures the reference temperature of the wood. The protruding
portions of both probes were insulated with a layer of foam rubber
surrounded by an outer shield of reflective material and transparent
plastic. Probe temperatures were recorded continuously with a
datalogger (CR21X, Campbell Scientific Corp., Logan, ut., USA)
equipped with a 32-channel multiplexer (AM416, Campbell
Scientific) and 10-min averages were stored in a solid-state storage
module (SM196, Campbell Scientific). Technical constraints asso-
ciated with availability of instrumentation and maneuvering the
crane’s gondola precluded concurrent measurements in more than
one tree at a time. Sap flow velocity was calculated from the
temperature difference between the probes using an empirical
relationship developed by Granier (1985). Mass flow of sap was
obtained by multiplying flow density by the sapwood cross-sec-
tional area. Sapwood cross-sectional area was determined by dye
injections (0.1% indigo carmine) in the main trunk and comparable
branches. Cores were extracted after injection and the colored
sapwood measured to calculate the cross-sectional area. Leaf area
distal to the sap flow probes was determined by multiplying the
total number of leaves by the average area per leaf obtained from a
subsample from 50-200 leaves removed randomly from each
branch (for C. longipes ten leaves were removed from the tree). Leaf
area was measured using a portable area meter (LI-3000, Li-Cor,
Inc., Lincoln, Nel., USA). Transpiration (£) was determined as sap
flow per unit leaf area through individual upper branches.

Conductances

Stomatal conductance (gs) was measured with a steady-state
porometer (LI-1600, Li-Cor) in five to six leaves representative of
the full range of light-exposure on each of the branches fitted with
sap flow sensors. Measurements were made between 1000 and 1600
hours during each of the 3—5 days of measurements on a given tree,
and three to five complete sets of measurements (45-100) were
obtained per day.
Crown conductance (g.) was calculated as
EP
v (1)

where P is atmospheric pressure and V, is the vapor pressure dif-
ference between the leaf interior and the bulk air calculated from
the saturation vapour pressure at leaf temperature and the ambient
vapour pressure. Leaf temperature was measured with fine wire
copper-constantan thermocouples attached with porous, paper
adhesive tape to the abaxial surface of each of six leaves on each
of the branches fitted with sap flow sensors. Temperatures were
recorded continuously and 10-min averages stored using the data
logging system described above. Ambient vapor pressure was cal-
culated from measurements of relative humidity and temperature

9e

made with shielded sensors (HMP35C, Campbell Scientific) at an
automated weather station installed in the upper canopy at the
crane site. Values of g. are expressed on a unit leaf area basis.

Total leaf area-specific hydraulic conductance of the soil/leaf
pathway (G,) of the branches fitted with sap flow probes was
determined as

E
AP (2

where AV is the difference between soil water potential and leaf
water potential at a given time. It was not necessary to apply a
height correction to account for variation in the gravitational
component of ¥ because differences in ¥ measured at the same
height within each tree rather than absolute values were used to
calculate G,. Predawn leaf water potential was used as an ap-
proximation of soil water potential. Leaf water potential was
measured psychrometrically at 0600 (predawn), 0900, 1200, and
1500 hours. Small leaf discs were rapidly excised with a cork borer
and sealed in chamber psychrometers (75 Series, J.R.D. Merrill
Specialty Equipment, Logan, Ut., USA). The chambers were
transported to the laboratory and placed in a water bath inside an
insulated box and allowed to equilibrate for 3—-5 h. Measurements
were taken with a 12-channel digital microvoltmeter (85 series,
JRD Merrill Specialty Equipment) in the psychrometric mode. The
psychrometers were calibrated regularly with salt solutions of
known water potential.

In addition to G, a dimensionless index of potential branch
architectural constraints on water supply in relation to transpira-
tional demand was obtained for each branch fitted with sap flow
sensors by dividing the total leaf area distal to the sensors by the
sapwood area at the point of sensor installation (LA/SA). The ratio
LA/SA was used to normalize values of g. and E. It is roughly
equivalent to the so-called Huber value, originally defined as the
cross sectional xylem area divided by the fresh weight of the leaves
distal to point of xylem area measurement (Zimmermann 1978).

G[:

Results

Average total daily sap flow varied about 8-fold from
46.5 kg day™' in C. longipes, the smallest tree, to
379.0 kg day~! in A. excelsum, the largest tree (Table 1).
Both total daily sap flow and maximum sap flow rates at
the bases of the five trees were positively correlated with
dbh (both with r = 0.99, P < 0.001; Table 1). Maxi-
mum values of crown conductance (g.) averaged
148 mmol m™> s~ for the five trees and were highest in
Ficus insipida, which also showed the highest average
stomatal conductance (gs) during the high-light hours
(1000-1300 hours), and lowest for A. excelsum, which
showed the lowest average g, (Tables 1 and 2).
Average sapwood area (SA) of upper branches in
which sap flow was measured ranged from about 11 cm?
in Luehea seemannii and Spondias mombin to 15-19 cm?
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Table 2 Morphological and water use characteristics of upper

obtained from branch sap flow measurements and g, are means

branches of the study trees. Values of stomatal conductance (g5) are = SE (n = 6 to 8 daily maximum FE values or 6-10 sets of g

averages of those recorded between 1000 and 1300 hours under measurements)

high irradiance conditions. Values of maximum transpiration (E)

Species Branch Sapwood Leaf area Leaf area Maximum £ gs

area (cm?) (m?) _— (mmol m~2 s7%) (mmol m~2 s7})
Sapwood area
(m?/em?)

Anacardium excelsum 1 13.8 18.92 1.37 0.42 + 0.02 140 + 14
2 14.9 17.45 1.17 0.31 £+ 0.00 126 £ 13
3 16.2 20.95 1.29 0.36 + 0.01 218 £ 90

Ficus insipida 1 16.2 4.11 0.25 3.57 £ 0.26 458 + 41
2 233 5.04 0.22 4.85 £ 1.56 426 + 44
3 16.8 5.35 0.32 2.05 £ 0.11 498 + 33
4 19.2 7.05 0.37 3.69 + 0.61 583 + 47

Luehea seemannii 1 11.1 4.73 0.42 1.02 £ 0.08 566 = 30
2 12.0 4.57 0.38 1.25 £ 0.24 484 + 41
3 8.5 2.38 0.28 3.61 + 0.40 487 + 44
4 13.1 3.28 0.25 2.03 £ 0.23 493 + 45

Spondias mombin 1 12.0 2.82 0.24 3.85 £ 0.15 454 + 28
2 8.3 2.30 0.28 2.03 = 0.03 468 + 36
3 11.6 7.56 0.65 1.66 + 0.08 460 + 31
4 11.4 4.29 0.38 1.09 £+ 0.03 516 + 58

Cecropia longipes 1 16.6 5.23 0.31 1.54 £ 0.07 377 £ 48
2 15.5 3.98 0.26 1.67 £ 0.28 433 + 23
3 16.7 7.41 0.44 0.85 £ 0.10 435 £ 15

in A. excelsum, C. longipes and F. insipida (Table 2). The
relative variation in leaf area (LA) of these branches was
greater than that of SA. Leaf area ranged from about
19 m? per branch in A. excelsum to 5 m? in the re-
maining species. Consequently, average LA/SA for A.
excelsum was 3-4 times that of the other four species.
There was also substantial variation in upper branch
SA, LA, and therefore LA/SA, within individuals. In S.
mombin, for example, LA/SA of branch 3 was 2.7 times
greater than that of branch 1.

Maximum transpiration per unit leaf area (£) on
similar sunny days (Table 2) was significantly different
among most of the trees (P < 0.05) and ranged from
0.36 mmol m™2s™" in A. excelsum to 3.54 mmol m™>s~"
in F. insipida. L. seemannii and S. mombin showed in-
termediate, similar values of E, averaging 2.1 mmol m™>
s~'. Both maximum E and g, under high light conditions
appeared to be negatively correlated with LA/SA.

Maximum sap velocity initially decreased sharply,
then more gradually with increasing branch and trunk
sapwood area (Fig. 1). The dependence of sap velocity
on SA from the upper branch to the whole-tree scale
appeared to be essentially identical in the five trees
studied. On a whole-tree basis, basal sapwood area and
total daily sap flow both increased exponentially with
tree height (Fig. 2).

Large differences in £ observed among branches of
the same individual were substantially reduced when
E was normalized by LA/SA. In S. mombin, for exam-
ple, all four study branches exhibited similar daily
courses of E, but average rates were about 2.5 times
greater in the branch with the highest rates than in the
branch with the lowest rates (Fig. 3A). After normaliz-

ing E by the corresponding value of LA/SA for each
branch, average E was only about 1.5 times greater in
the branches with the highest £ (Fig. 3C). Transpiration
rates for branches of L. seemannii showed a similar
convergence after normalizing by their corresponding
values of LA/SA (Fig. 3B, D).

A comparison of daily courses of E determined on
comparable, clear days indicated that variation in E
among trees was even larger than that within trees
(Fig. 4A). Average midday E was greatest in F. insipida
(c. 2mmol m™? s') and smallest in A. excelsum
(c.0.4 mmol m~? s™"). Normalizing E by corresponding
branch LA/SA values again caused daily courses of
transpiration to converge, except during the early
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Anacardium excelsum (B ), Cecropia longipes (® <), Ficus insipida
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are means of maximum values on 3 representative clear days
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Fig. 3A, B Representative daily courses of transpiration (E) and C, D
transpiration normalized by the leaf area:sapwood area ratio (LA/SA)
for four upper branches of L. seemannii and S. mombin. Total leaf
area, sapwood area, and LA/SA values are given in Table 2
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morning when E briefly attained maximum values in
S. mombin and F. insipida (Fig. 4B).

Variation in the vapor phase conductances, g. and g,
was closely associated with variation in the leaf area-
specific total hydraulic conductance of the soil/leaf
pathway, G, (Fig. 5A & B). In each case, a single func-
tion appeared to describe the relationship between vapor
and liquid phase conductance for all individuals. The
results presented in Fig. 5 also reflect diurnal variation
in liquid and vapor phase conductance. Concurrent data
for determination of both vapor and liquid phase con-
ductance were available at 0900, 1200, and 1500 hours
for F. insipida and L. seemannii, at 0900 and 1200 hours
for C. longipes, at 1200 and 1500 hours for 4. excelsum,
and only at 1200 hours in S. mombin. Hydraulic con-
ductance was highest at 0900 hours and lowest at 1500
hours. In F. insipida, for example, G, was 5.7 mmol m >
s™' at 0900 hours and 2.7 mmol m™ s™" at 1500 hours.

Diurnal variation in G, was associated with diurnal
variation in the difference between sap flow measured in
the upper crown and at the base of the trees (Fig. 6). If
sap flow in the upper crown is taken to be a surrogate
for transpiration, then the difference between crown and
basal sap flow reflects the magnitude of water exchange
between the transpiration stream and storage in the stem
(Goldstein et al. 1998). When this difference is positive, a
fraction of transpired water is being derived from in-
ternal storage. When the difference is negative, internal
storage is partially depleted and being recharged. Thus
G, was high when water was being withdrawn from in-
ternal storage and low when internal storage was being
recharged.
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Fig. 4 A Representative daily courses of upper branch transpiration
(E), and B transpiration normalized by the leaf area:sapwood area
ratio (LA/SA) for 4. excelsum (- - -), C. longipes (—), F. insipida (——-),
L. seemannii (——— ), and S. mombin (—-—-—). Lines are means of three
to four branches
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Fig. 6 Leaf area-specific hydraulic conductance (G,) in relation to the
difference between crown sap flow and basal sap flow. Symbols as in
Fig. 1

Variation in G, among individuals was negatively
correlated with variation in LA/SA (Fig. 7). The exact
shape of the relationship between G, and LA/SA was
difficult to discern because data obtained from three of
the five individuals studied were clustered around in-
termediate values of G,. Nevertheless, G, appeared to
initially decline sharply, then more gradually with in-
creasing LA/SA. Predawn leaf water potential ranged
from about —0.35 to —1.2 MPa among the five species
studied. No dependence of g. on leaf water potential was
detected over this range. When g. was normalized by
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Fig. 7 Leaf area-specific hydraulic conductance (Gy) in relation to
mean branch leaf area:sapwood area ratio (LA/SA). Symbols as in
Fig. 1

LA/SA, its lack of dependence on leaf water potential
became even more apparent (data not shown).

Discussion

Our results raise a number of questions concerning the
choice of appropriate scales for comparing ecophysio-
logical behavior among individuals of both different and
the same species. Reliance on an inappropriate scale or
an inadequate range of scale may result in misleading
conclusions regarding intrinsic physiological differences
in regulation of processes such as transpiration. In the
present study, for example, individuals of five contrast-
ing species differing markedly in size, tree architecture,
and phylogeny, exhibited a common relationship be-
tween sap flow, sapwood area and tree size (Figs. 1 and
2). Thus, at this range of scale, from basal to branch
sapwood area, intrinsic physiological differences in the
regulation of transpiration were not detected. Only when
transpiration was scaled to a unit leaf area basis did
apparent differences among species, and even among
branches within the same individual, emerge.

Differences in transpiration at the single leaf level
were associated with variation in G, to which stomata of
all species responded similarly (Fig. 5). Two major
components of variation in G, LA/SA (Fig. 7) and ex-
change of water between internal storage compartments
and the transpiration stream (Fig. 6), were consequences
of variation in branch architecture and tree size. Fur-
thermore, stomata of these five species responded simi-
larly to variation in evaporative demand when g, was
normalized for variation in LA/SA (Meinzer et al. 1997).
Thus, differences in stomatal regulation of transpiration
on a leaf area basis among and within trees appeared to
be governed largely by tree size and architectural fea-
tures rather than physiological differences in the re-
sponsiveness of stomata to variables affecting their
aperture.

Despite the convergence of behavior observed at the
whole-tree and branch scales, conclusions derived from
measurements on a single individual of each of five



species must be regarded as preliminary. The extent to
which the observed relationships would persist under
conditions beyond those prevailing in our study is not
known. The dependence of transpiration on sapwood
area and tree height may differ in the same co-occurring
species growing in other sites and in additional species
with different functional traits such as drought-decidu-
ousness, especially when soil water is more limiting. For
example, rainfall was about 250% above normal for the
dry season period during which our results were
obtained. It is possible that under drier conditions
transpiration-sapwood area and transpiration-tree
height relationships would be distinct for each species.
This would certainly be true for S. mombin, which is
normally deciduous earlier during the dry season.

The close coordination between vapor and liquid
phase water transport properties in individuals of the
five tropical forest tree species studied (Fig. 5) suggests
that stomata of all five trees responded similarly to
changes in water transport efficiency on a leaf area basis.
Stomatal adjustments to changing G, appeared to bal-
ance E with water transport efficiency rather than bulk
leaf water status. Comparable relationships between
vapor and liquid phase conductance have been observed
in sugarcane (Saliendra and Meinzer 1989), the riparian
tree Betula occidentalis (Sperry and Pockman 1993), and
five woody tropical forest gap colonizing species
(Meinzer et al. 1995).

The mechanisms linking g, g. and therefore tran-
spiration, to variation in G are not known. It has been
proposed that chemical signals transported from the
roots to the leaves may be responsible for coordination
of g with hydraulic conductance during plant develop-
ment (Meinzer and Grantz 1990; Meinzer et al. 1991), or
during progressive soil drying (Davies and Zhang 1991;
Tardieu and Davies 1993). In tall trees, however,
transport of chemical signal from the roots to the upper
leaves may take several days because maximum sap ve-
locities in the main stem are often less than 0.5 m h™'
(Granier 1987; Dye et al. 1996; Zang et al. 1996). Fur-
thermore, the rapidity and reversibility of responses of g
to perturbation of the hydraulic pathway or to soil
drying in some woody species seems inconsistent with
regulation of g, by chemical signals generated in the
roots. For example, stomata of Abies amabilis seedlings
responded within a few minutes to alterations in the
hydraulic pathway in the absence of changes in bulk leaf
water status (Teskey et al. 1984). In seedlings of other
tree species, reductions in g, arising from soil drying
(Fuchs and Livingston 1996) and reduced hydraulic
conductance (Saliendra et al. 1995) were rapidly reversed
when roots sealed in a chamber were pressurized. Fi-
nally, Whitehead et al. (1996) observed a rapid increase
in g5 of up to 60% in upper, illuminated needles of Pinus
radiata trees when the leaf-specific hydraulic conduc-
tivity of the illuminated leaves was increased by covering
the lower 78% of the foliage. Based on these responses,
it has been suggested that rapidly propagated hydraulic
perturbations could trigger the release of chemical reg-
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ulators of g directly within the leaves (Whitehead et al.
1996).

Consistent with the above observations, variation in
gs and g, was also closely associated with short-term
variation in G, (Fig. 5) apparently arising from diurnal
depletion and recharge of internal water reserves in the
stems (Fig. 6). Exchange of water between the transpi-
ration stream and internal storage compartments was
assessed from simultaneous measurements of sap flow in
the upper crowns and at the bases of the trees. Using this
method with the same group of trees studied in the
present work, Goldstein et al. (1998) observed that on
clear days, withdrawal of transpirational water from
internal stores was maximal by about 0900 hours with
recharge of internal stores beginning in the late morning
or early afternoon, and that withdrawal of water from
and recharge of internal stores was a dynamic process,
tightly coupled to variations in environmental condi-
tions. All five trees conformed with a common linear
relationship between diurnal water storage capacity and
basal sapwood area and a common exponential rela-
tionship between diurnal water storage capacity and tree
height.

Variation in LA/SA was also likely to have contrib-
uted to variation in G,. When E was normalized by LA/
SA, a morphological index of potential transpirational
demand relative to water transport capacity, apparent
differences among branches on the same individual (e.g.,
Fig. 2), and even among species (Fig. 3), were substan-
tially reduced. However, E and LA/SA are not inde-
pendent because E is obtained by multiplying sap
velocity by the reciprocal of LA/SA. Normalizing £ by
LA/SA thus yields the original measurement of sap ve-
locity. Nevertheless, Meinzer et al. (1997) reported that
a common relationship between g and evaporative de-
mand emerged for F. insipida, C. longipes, S. mombin
and L. seemannii when independent measurements of g
were normalized by LA/SA. If intrinsic branch hydraulic
properties are similar in all five species, variation in LA/
SA may have consequences for stomatal functioning and
regulation of transpiration comparable to those of
variation in leaf area-specific hydraulic conductivity
reported in other studies (e.g., Kiippers 1984; Meinzer
et al. 1990; 1995; Sperry and Pockman 1993). Indeed, G,
and LA/SA were negatively correlated (Fig. 7), sug-
gesting that variation in LA/SA was an important
component of variation in water transport efficiency on
a leaf area basis. In this context, data presented by
Whitehead et al. (1984) for thinned and unthinned
stands of Pinus sylvestris show that the ratio of canopy
transpiration in the thinned stand to that in the un-
thinned stand (0.67) was virtually identical to the ratio
of the stand-level LA/SA in the unthinned stand to that
in the thinned stand (0.68). Stand transpiration rates
thus converged when normalized by their corresponding
LA/SA values.

It has been suggested that transpiration and photo-
synthetic gas exchange, and therefore tree growth, are
limited by increasing axial hydraulic resistance associ-
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ated with increasing tree height (Ryan and Yoder 1997).
Evidence for this hypothesis comes largely from studies
carried out with conifers (e.g., Waring and Sylvester
1994; Yoder et al. 1994; Mencuccini and Grace 1996).
For example, Mencuccini and Grace (1996) observed
that above-ground leaf area-specific hydraulic conduc-
tance decreased with increasing tree size in individuals of
Pinus sylvestris ranging from 7 to 59 years of age and 1.6
to 24 m in height. However, they also noted that
whereas mean path length increased by a factor of 20,
leaf area-specific conductance decreased by a factor
of 3.5, indicating that substantial compensation had
occurred to avoid excessive increase in resistance.

Our results suggest that there were hydraulic con-
nections between the transpiration stream and water
stored in the sapwood and that stem water storage may
partially compensate for potential increases in axial
hydraulic resistance with increasing tree height, thereby
limiting the extent of stomatal closure required to
maintain leaf water status. Our observations of a close
association between diurnal variation in vapor phase
conductance and G, and between G, and exchange of
water between the transpiration stream and internal
storage compartments also raise the possibility that the
midday depression in g followed by partial recovery in
the afternoon often observed in woody species (Ten-
hunen et al. 1980, 1984) may be a reflection of the hy-
draulic consequences of diurnal depletion and recharge
of internal water reserves.

The exponential increases in sapwood area and daily
water use with tree height (Fig. 2) further suggest that
whole-tree transpiration may not have become increas-
ingly limited by axial hydraulic resistance as tree height
increased. Although sap flow per unit sapwood area de-
creased with increasing tree height (data not shown), this
may have reflected an increasing relative allocation of
carbon to sapwood, and therefore water transport ca-
pacity, with increasing tree height rather than an increase
in axial hydraulic resistance. It is highly unlikely that the
pattern shown in Fig. 2B reflected differences between
suppressed and emergent trees in this relatively open
canopy with numerous gaps. The crown of the shortest
study tree, C. longipes, was in a large gap and was not
overshadowed directly above by the crowns of other
trees. The crowns of the remaining study trees were
similarly exposed. Furthermore, substantial differences
among trees in the prevailing solar radiation regime
would have introduced more noticeable variability in the
relationship shown in Fig. 5B, and obscured the effects of
the normalization procedure applied in Fig. 4B.

We conclude that although the traditional reliance on
characterization of ecophysiological behavior at the leaf
level may tend to magnify differences among species and
individuals, obscure basic similarities, and obscure
mechanisms responsible for differences in behavior at
the leaf level, these measurements are an essential com-
ponent of understanding ecophysiological behavior at
the whole plant level. We suggest that efforts to char-
acterize and compare regulation of processes such as

liquid water transport and transpiration should treat
plants, especially large forest trees, as integrated, whole
organisms, by incorporating concurrent measurements
at multiple scales from the whole-plant to the leaf level.
Even when this is done, it is important to recognize that
trees representing a substantial range of size classes
within each species should be included. Otherwise, in-
terspecific comparisons of behavior among individuals
of different size classes may lead to the potentially er-
roneous conclusion that observed differences are inter-
specific rather than size-related.
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